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Abstract. Genetic Programming often uses excessive computational re-
sources because the population size and the maximum number of gener-
ations per run are not optimized. We have developed a technique called
Virtual Ramping which eliminates the need to find an optimal value for
these parameters and allows GP to be applied effectively to more difficult
problems. Virtual Ramping continuously increases the size of a virtual
population and the number of generations without requiring additional
system memory. It also allows sub-populations to evolve independently
which reduces premature convergence on suboptimal solutions. Empirical
experiments with problems of varying difficulty, confirm these benefits
of Virtual Ramping.

1 Introduction

Genetic Programming(GP) is expected to be computationally intensive. Unfor-
tunately it often uses far more resources than necessary because two parameters,
population size and maximum generations per run, are rarely optimized. These
two parameters are perhaps the most important[1] because they set the space
and time requirements for a GP run. It is possible to determine the optimal
values for these parameters[2], but this is rarely done with real world problems
because the determination of these optimal values is done empirically and is
too computationally intensive. Research in Genetic Algorithms has shown that
optimal population sizes will vary with the problem complexity [3] and it is rea-
sonable to expect that optimal population sizes in GP will also depend on the
problem being solved.

In previous experiments the difficulty in determining optimal values has
forced us to just guess at the appropriate population size and maximum gen-
erations per run. Sometimes the selection of these parameters has been based
on values used by other researchers with different problems. At other times, we
would set the population size to some large value based on the amount of mem-
ory available. Our experience has shown us that regardless of the theoretical
optimal population size, if it is set too large then virtual memory is required and
this will dramatically slow down GP. Research has shown that in general larger
populations are better [4], but computational effort was not considered in this
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conclusion, and it did not address whether better results could be achieved for
the same effort by using smaller populations with more runs or more generations
per run.

In our previous work we also had no methodology for setting the maximum
number of generations per run, so we would set it to a large value, based on
the limit of the amount of computer time that we had available to expend on a
problem.

In his first book on GP Koza explains that more runs with fewer generations
per run can be more efficient but again the computational effort involved in
determining the optimal values is prohibitive for real world problems[2]. Only
with toy problems is it it feasible to solve the problem hundreds of times to
determine optimal parameters values.

To address the GP problem of finding optimal population sizes and maximum
numbers of generations per run we have developed a technique called Virtual
Ramping (VR). VR eliminates the need to predetermine these parameters by
continuously increasing a virtual population size and the number of generations
until GP has sufficient space and time resources to solve a given problem. We
refer to our technique of dynamically increasing a GP population size as Virtual
Ramping because it does not require an increase in system memory or the use
of virtual memory as the virtual population size grows. The virtual population
is represented by an actual population of individuals which is fixed in size.

VR also allows parts of the virtual population to evolve independently of
each other. Researchers who work with endangered species understand that if
the diversity in a population drops below a certain level, the populations vi-
ability can be restored by introducing new individuals into the population[5].
This benefit has been reported when sub-populations are maintained separately
during parallel implementations of GP[6]. Maintaining separate sub-populations
prevents an individual that is a local maxima, from saturating the entire pop-
ulation with it’s genetic material and impeding the search for better solutions.
Other research shows that separate sub-populations in parallel GP systems re-
duces code bloat[7].

In this research we experimentally determine that GP with VR evolves bet-
ter solutions than GP without VR when both are given the same amount of
computational resources. By better solutions we mean that the models evolved
using VR have a higher accuracy when classifying observations outside of the
training data.

2 The Test System

The Genetic Programming System we have written for these experiments is
called NUGP. It is a classical Koza type GP system designed as an experimental
test bed for new GP techniques. It has an object oriented design where the
GP individuals are based on the Strategy pattern [8]. Its most important class
is a singleton called Experiment. NUGP includes a Statistical Analyzer that
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compares test scores to see if there are significant statistical differences between
sets of GP runs[9].

3 Fair Allocation of Computational Resources

In order to allow a fair comparison of different GP systems we need to be certain
that each is given the same amount of computational resources. Often compu-
tational effort in GP is measured in generations, but this may not be accurate.
Generations usually take increasing amounts of time as GP progresses. This is
illustrated by the graph in Figure 1 which shows the average time per generation
in one of our typical GP runs (without VR) over a 5 minute period. The latter
generations are taking 6 to 7 times as long as the first generation.
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Fig. 1. Average milliseconds per generation as GP runs progress in time

This increase is apparently caused by code bloat[10] as illustrated in the
graph in Figure 2, which shows that the increase in time per generation corre-
sponds closely to the increase in the average tree size (with a coefficient of linear
correlation equal to 0.97).

At best counting the number of generations per run is an uneven measure of
computational effort in GP and at worst it is an unfair one. Since GP with VR
tends to generate smaller S-expression trees it uses less computational resources
than GP without VR when they are run for the same number of generations.1

1 Strictly speaking NUGP does not have generations. It runs asynchronously. We do
however still have an analogous term Round which is the time during which an
asynchronous system will allow n individuals to mate where n is the size of the
population. In this paper we will refer to a Round as a Generation.
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Fig. 2. Average S-expression tree size as GP runs progress in time

Fig. 3. Average microseconds per S-expression node evaluation as GP runs progress in
time

Execution time has been used as a measure of GP system resources [11].
This might work on some platforms but NUGP runs on multiple machines with
different configurations that do not have a real time operating system. One of
our goals for NUGP was to be able to perform GP runs on different systems and
still be able to compare the performance objectively.

We have chosen the the number of S-expressions nodes evaluated as our mea-
sure of computational effort. We have chosen it because it is independent of
hardware performance and software implementation. In the graph in Figure 3
we see that the average number of microseconds per node evaluation is rea-
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sonably consistent throughout a GP run. This confirms that the number of S-
expressions evaluated is a good unit of measure for allocating resources in GP
research. Since this number is fairly large we use the term MNE to stand for
Million Nodes Evaluated.

4 Methodology

To understand Virtual Ramping we will first consider another hypothetical tech-
nique, which we will refer to simply as Ramping. Ramping cannot actually be
implemented because its memory requirements grow exponentially. We will then
examine Virtual Ramping and see that it provides the benefits of Ramping while
maintaining a constant memory requirement. The flow chart for the Ramping
process is shown in Figure 4. Ramping would be implemented as follows. A vari-
able s is set to the initial population size. Typically it would be started at a
small value such as ten. A variable g is set to an initial number of generations.
This would also be a small value such as one. A GP population referred to as
the saved population or Psaved would be generated with s individuals and run
for g generations.

Now the main loop of the Ramping algorithm will begin. Another popula-
tion called P is generated with a population size of s and allowed to run for
g generations. Then population P is merged into population Psaved, which will
double it in size. Population Psaved is allowed to run for g more generations. At
this time the variables s and g will both be doubled. Then the best individual in
Psaved is examined to see if it is a satisfactory solution and in this case process is
done and has been successful. If the problem is not solved and memory or time
resources are not exhausted then the loop will continue to run.

Since the values of s and g are doubled, each time through the loop, the
population Psaved will continually double in size and will keep running for twice
as many generations. In this way Ramping will continuously double the memory
and time resources used, until a solution is found or the resources are exhausted.

The advantage of Ramping is clear. The GP practitioner does not have to
determine or guess the required population size and the maximum number of
generations per run needed to solve a problem. Less difficult problems will be
solved quickly with small populations running for fewer generations. Harder
problems will be solved (hopefully) as the population size and the number of
generations are increased sufficiently. The disadvantage of Ramping is also clear.
The constant doubling of the population size will quickly exhaust all available
computational resources.

How can we modify this technique so that the memory requirements do
not grow exponentially? The answer is a modified version of Ramping, which
we call Virtual Ramping or VR. At each point where Ramping would double
the population size, VR also discards half the population using a tournament
selection to ensure that the less fit individuals are more likely to be discarded.

In this way VR maintains a constant memory requirement. Since a tourna-
ment selection is used when cutting the population in half, the surviving half
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 Set s = 10 and  g = 1 

Generate Population Psaved with 
population size of s 

Generate Population P with 
population size of s 

Run Psaved for g generations 

Run P for g generations 

Add all the individuals in P to Psaved 

Run Psaved for g generations. 

Set s = 2 * s and g = 2 * g 

Start 

Is 
Problem 
Solved? 

Are 
Resources 

Exhausted? 

yes 

yes 
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Stop 
With 

Success. 

Stop 
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Failure. 

Fig. 4. Flow Chart for Ramping
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 Set s = 1000 and  g = 1 

Generate Population Psaved with 
population size of s 

Generate Population P with 
population size of s 

Run Psaved for g generations 

Run P for g generations 

Add remaining individuals in P to Psaved 

Run Psaved for g generations. 

Set g = 2 * g 

Start 

Is 
Problem 
Solved? 

Are 
Resources 

Exhausted? 

yes 

yes 

no

no 

Stop 
With 

Success. 

Stop 
With 

Failure. 

Discard half of Psaved with 
tournament selection 

Discard half of P with 
tournament selection 

Fig. 5. Flow Chart for Virtual Ramping
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should retain the majority of the population’s “good” genetic material and thus
keep most of the benefit of Ramping without the exponential increase in memory
requirements.

The flow chart for VR, Figure 5 shows the details of how this works. It
is essentially the same as Ramping with a few minor but important changes.
At the end of the loop the value of g is doubled but the value of s does not
change. Before the population P is merged into Psaved half of the individuals
are discarded from both populations using a tournament selection in an effort
to keep the best individuals. These reductions ensure that the size of population
Psaved will never exceed the value of s. Since the value of s remains constant it
is started out at a much larger value such as 1000.

5 The Experiments

We now ask, does VR benefit the GP process? It eliminates the need to determine
the population size and the maximum number of generations per run but does
it generate solutions that make more accurate classification of test observations
that were not used during training? To answer this question we have conducted
some experiments. VR has been tested using three problems of different difficulty
which we refer to as Easy, Medium, and Hard. All of the problems are symbolic
regression problems with a set of independent variables and a dependant variable,
which was derived from a predetermined formula. For each problem there were
three sets of 30 observations. There was a training set, which was used by GP for
training, and there were two tests sets referred to as Test1 and Test2. GP was
trained using the training set and a fitness function described in the following
formula:

fitness = we

( n∑
i=1

(2Ei − 1)

n

)
. (1)

Ei is the prediction error for observation i defined as

Ei = |yi − ŷi| . (2)

Where yi and ŷi are the value of dependent variable value and the prediction
of the dependent variable for observation i. In this case n is 30 because there
are 30 observations in the training data set.

The use of 2Ei in formula (1) makes it an exponential fitness function, which
is a means of directing GP to concentrate on the largest errors. The reason for
subtracting one from the exponential error term is so that zero will signify no
error.

After using the exponential fitness function to drive the GP process the best
individuals from each GP run are tested using the two sets of test observations.
The evaluation function for the test sets consists of the percentage of the ob-
servations, which are misclassified in one of the three categories: Less than zero,
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Close to zero, and Greater than zero.2 An observation will be considered cor-
rectly classified if both the dependant variable and the GP model prediction are
both greater than zero, both less than zero, or both within a given threshold of
zero, i.e., both close to zero.

For the Medium and Hard problems the threshold for being close to zero
was set to be between −2 and 2. The Easy problem was so easy that at first
GP always evolved models that were 100% accurate at classification with or
without VR. The ability to do this is a credit to GP, but also makes the Easy
problem useless for the purpose of evaluating the benefit of VR. In order to
make the Easy problem more difficult the threshold for being close to zero was
set to being exactly zero. Also where GP was applied to the Easy problem the
actual population size was reduced from 1000 to 100. After making these changes
the Easy problem was tackled with and without VR and we were then able to
determine that the system with VR produced better results.

For each of the three problems an experiment was run with one hundred GP
runs with VR and another one hundred runs without. During each generation
98% of the new individuals were created through reproduction. Individuals were
selected for mating with a tournament size of two. Mutation was applied to 2% of
the individuals. Individuals were randomly selected for mutation with a uniform
distribution. S-expression trees were limited to 1024 nodes. Initial populations
were generated with sparse and bushy trees with depths between 3 and 6 levels.
In each generation Numeric Mutation was applied to 10% of the numeric con-
stants in 10% of the population. Numeric Mutation replaces the constants with a
randomly generated value using a normal distribution around the previous value
and a standard deviation of an individual’s fitness score divided by ten[12]. All of
these parameters were held constant for all runs. All runs in the experiment with
the Easy problem were allowed to continue until 100 million S-expression nodes
had been evaluated. In the experiment with the Medium and Hardproblems,
runs were executed until one billion S-expression nodes were evaluated.

The GP function set includes addition, subtraction, multiplication, protected
division, and a function called IFGTZ (if greater than zero). IFGTZ has three
arguments. If the first argument is greater than zero then it will return the second
argument, otherwise it returns the third argument. The terminal set included
the independent variables and the random ephemeral constant.

In each experiment the only difference between the two sets of runs was that
VR was used with one set and not used in the other.

The training and the two test data sets for each of the three problems were
synthetically generated. For the Easy problem each observation consisted of two
independent variables, which were selected at random between −2 and 2 with
a uniform distribution. We will refer to these two values as x1 and x2. The
dependent value y was calculated using the formula

y = (3.456x1) + (6.543/x2) . (3)

2 all of the data has been normalized to have an mean of zero.
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For the Medium problem each observation consisted of five independent vari-
ables, which were also selected between −2 and 2 with a uniform distribution.
The independent variables are referred to as x1,x2,x3,x4 and x5. The dependent
value y was calculated for each observation as

y = (x1x2) + ((3x2
3 + 5x4)/x5) . (4)

The Hard problem was generated in the same way as the Medium problem
with two important exceptions. After calculating the dependent variable, each of
the independent variables values was modified by replacing it with a randomly
generated value selected between plus or minus 10% of its value using a uniform
distribution. This random component is a simulated measurement error added
to make the problem harder for GP and more like a real world problem. Also
five additional independent variables were added, also randomly generated like
the original five independent variables, but these were not used to generate
the dependent variable values. There were added to challenge GP’s ability to
do model selection and determine which independent variables should be used
when building models.
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Fig. 6. Average percent misclassified in test data sets with and without Virtual Ramp-
ing

6 The Experimental Results

For all three problems 100 GP runs were made with VR and another 100 GP
runs were made without VR. As shown in Figure 6, for all three cases the average
percent misclassified (in both test sets) was smaller with VR.

To understand the significance of this we must also consider the sample
variances and calculate the z statistic. This data is summarized in Table 1. In all
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Table 1. Statistics for the three problems with and without Virtual Ramping. (All
samples consist of 100 runs.)

Easy Problem Med. Problem Hard Problem

With VR Test 1 Test 2 Test 1 Test 2 Test 1 Test 2
Ave. Misclassified 0.00833 0.00967 0.11667 0.09867 0.13367 0.15467
Variance 0.00142 0.00108 0.00946 0.00666 0.01357 0.01442
Without VR
Ave. Misclassified 0.09567 0.06567 0.15967 0.14367 0.31233 0.33500
Variance 0.01429 0.00715 0.00676 0.00617 0.02875 0.02690
z statistic -6.9670 -6.1720 -3.3759 -3.9727 -8.6855 -8.8713

Table 2. Statistics for the three problems with and without Virtual Ramping in the
repeated experiments. (All samples consist of 100 runs.)

Easy Problem Med. Problem Hard Problem

With VR Test 1 Test 2 Test 1 Test 2 Test 1 Test 2
Ave. Misclassified 0.00933 0.01067 0.11367 0.09567 0.11700 0.14867
Variance 0.00103 0.00065 0.00657 0.00432 0.01011 0.01435
Without VR
Ave. Misclassified 0.08933 0.06600 0.16433 0.13133 0.30167 0.31733
Variance 0.01066 0.00563 0.00600 0.00615 0.02770 0.02832
z statistic -7.3980 -6.9814 -4.5177 -3.4856 -9.4957 -8.1653

cases the absolute value of the z statistic is greater than 2.576 (required for 99%
confidence with a two tailed test). We conclude (with a 99% certainty)[13] that
for all three problems VR reduces misclassification in test data sets. All three
experiments were repeated with similar results shown in Table 2.

7 Conclusions

We have run experiments with three different problems, which we have named
Easy, Medium, and Hard. In each experiment we have concluded, with a 99%
confidence, that Virtual Ramping improves GP’s ability to classify observations
outside of the training set. We found that this observation was true using two
separate sets of test data for each of the three problems. To further reinforce our
conclusion, the entire experiment was repeated with similar results.

The technique of Virtual Ramping could be applied to other forms of Evo-
lutionary Computation. We suspect that it will provide similar benefit but ex-
periments are needed to confirm this.
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